Su, C.-Y., Wu, C.-M., Chen, W.-T., & Chen, J.-H. Implementation of the Unified Representation of Moist Convection in the Gray Zone CWBGFS.

Wu, C.-M.*, & Chen, P.-Y. (2021). Idealized cloud-resolving simulations of land-atmosphere coupling over tropical islands. Terrestrial, Atmospheric and Oceanic sciences journal, in press. https://doi.org/ 10.3319/TAO.2020.12.16.01

Chen, P.-J., Chen, W.-T., Wu, C.-M., & Yo, T.-S. (2021). Convective cloud regimes from a classification of object-based CloudSat observations over Asian-Australian monsoon areas. Geophysical Research Letters, 48, e2021GL092733. https://doi. org/10.1029/2021GL092733

Jian, H.-W., W.-T. Chen, P.-J. Chen, C.-M. Wu, and K. I. Rasmussen, 2021: The synoptically-influenced extreme preipitation systems over Asian-Australian monsoon region observed by TRMM Precipitation Radar. J. Meteor. Soc. Japan, 99, Special Edition on Global Precipitation Measurement (GPM): 5th Anniversary, https://doi.org/10.2151/jmsj.2021-013


Hung, M.-P.; Chen, W.-T.; Wu, C.-M.; Chen, P.-J.; Feng, P.-N. Intraseasonal Vertical Cloud Regimes Based on CloudSat Observations over the Tropics. Remote Sens. 2020, 12, 2273.

Huang J.-D. and C.-M. Wu* 2020: Effects of Microphysical Processes on the Precipitation Spectrum in a Strongly Forced Environment. Earth and Space Science. DOI: 10.1029/2020ea001190

Ma H.-Y., C.-M. Wu and co-authors 2020: A multi-year short-range hindcast experiment for evaluating climate model moist processes from diurnal to interannual time scales. GMD. DOI: 10.5194/gmd-2020-39

Kuo Y.-H., C.-M. Wu and co-authors 2020: Convective transition statistics over tropical oceans for climate model diagnostics: GCM evaluation. J. Atmos. Sci. DOI: 10.1175/JAS-D-19-0132.1

Kuo, K.-T., W.-T. Chen* and C.-M. Wu 2020: Effects of convection-SST interactions on South China Sea Summer Monsoon Onset in a Multiscale Modeling Framework Model. Terr. Atmos. Ocean. Sci. DOI: 10.3319/TAO.2019.08.16.01


Chang Y.-P., S.-C. Yang K.-J. Lin, G.-Y. Lien and C.-M. Wu 2019: Impact of Tropical Cyclone Initialization on its Convection Development and Intensity: A Case Study of Typhoon Megi (2010) J. Atmos. Sci. DOI: 10.1175/JAS-D-19-0058.1

Chen, Y.-T. and C.-M. Wu* 2019: The role of interactive SST in the cloud-resolving simulations of aggregated convection. J. Adv. Model. Earth Syst. DOI: 10.1029/2019MS001762

Tsou, S.-W., C.-Y. Su, and C.-M. Wu* 2019: Learning the Representations of Moist Convection with Convolutional Neural Networks. arXiv:1905.09614

Chen, W.-T.*, C.-M. Wu, W.-M. Tsai, P.-J. Chen and P.-Y. Chen 2019: Role of coastal convection to moisture buildup during the South China Sea summer monsoon onset. J. Meteor. Soc. Japan. DOI:10.2151/jmsj.2019-065

Chen, W.-T.*, C.-M. Wu and H.-Y. Ma 2019: Evaluating the bias of South China Sea summer monsoon precipitation associated with fast physical processes using climate model hindcast approach. J. Climate. DOI: 10.1175/JCLI-D-18-0660.1

Wu, C.-M.*, H.-C. Lin, F.-Y. Cheng, and M.-H. Chien, 2019: Implementation of the land surface processes into a vector vorticity equation model (VVM) to study its impact on afternoon thunderstorms over complex topography in Taiwan. Asia-Pacific J. Atmos. Sci., https://doi.org/10.1007/s13143-019-00116-x

Kuo, K.-T., and C.-M. Wu*, 2019: The precipitation hotspots of afternoon thunderstorms over the Taipei Basin: Idealized numerical simulations. J. Meteor. Soc. Japan, 97, 501-517 https://doi.org/10.2151/jmsj.2019-031.

Su, C.-Y., C.-M. Wu*, W.-T. Chen and J.-H. Chen 2019: Object-Based Precipitation System Bias in Grey Zone Simulation: the 2016 South China Sea Summer Monsoon Onset. Clim Dyn. https://doi.org/10.1007/s00382-018-04607-x.



Ong, H., C.-M. Wu, and H.-C. Kuo 2017: Effects of artificial local compensation of convective mass flux in the cumulus parameterization, J. Adv. Model. Earth Syst., 9, 1811–1827, doi:10.1002/2017MS000926.

Tsai, W.-M., and C.-M. Wu* 2017: The environment of aggregated deep convection, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000967.


Arakawa A., J.-H. Jung and C.-M. Wu 2016: Multiscale Modeling of the Moist-Convective AtmosphereMeteorological Monographs

Tsai, J.-Y. and C.-M. Wu* 2016: Critical Transitions of Stratocumulus Dynamical Systems due to perturbation in free atmosphere moisture. Dynamics of Atmospheres and Oceans, Vol. 76, Part 1, Pages 1-13.

Chien, M.-H., and C.-M. Wu* 2016: Representation of topography by partial steps using the immersed boundary method in a vector vorticity equation model (VVM), J. Adv. Model. Earth Syst., 8, 212–223.


Arakawa A. and C.-M. Wu, 2015: Reply to “Comments on ‘A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I’”. J. Atmos. Sci., 72, 2566–2567.

Wu, C.-M*., M.-H. Lo, W.-T. Chen and C.T. Lu, 2015: The impacts of Heterogeneous Land Surface Fluxes on the Diurnal Cycle Precipitation – A Framework for Improving the GCM Representation of Land-Atmosphere Interactions. J. Geophys. Res. Atmos.

Xiao, H., W. I. Gustafson Jr., S. M. Hagos, C.-M. Wu, and H. Wan (2015), Resolution-dependent behavior of subgrid-scale vertical transport in the Zhang-McFarlane convection parameterization, J. Adv. Model. Earth Syst., 7, 537–550


Wu, C.-M., and A. Arakawa, 2014: A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part II. J. Atmos. Sci., 71, 2089–2103.


Arakawa, A., C.-M. Wu, 2013: A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I. J. Atmos. Sci., 70, 1977–1992.

Lo, M.-H., C.-M. Wu, H.-Y. Ma, and J. S. Famiglietti, 2013: The response of coastal stratocumulus clouds to agricultural irrigation in California, J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50516.


Xiao, H., C.-M. Wu*, R. Mechoso, and H.-Y. Ma, 2012: A treatment for the stratocumulus-to-cumulus transition in GCMs. Climate Dynamics. Published online. DOI: 10.1007/s00382-012-1342-z


Wu, C.-M. and A. Arakawa, 2011: Inclusion of surface topography into the vector vorticity equation model (VVM). J. Adv. Model. Earth Syst. Vol. 3, Art. M06002, 13 pp.

Arakawa A., J.-H. Jung and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys. 11, 3731-3742.


Arakawa A., J.-H. Jung and C.-M. Wu, 2010: Toward unification of general circulation and cloud-resolving models. In proceedings of ECMWF workshop on non-hydrostatic modelling, 8-10 November, 2010, 18pp.

Xiao, H., C.-M. Wu and C. R. Mechoso, 2010: Buoyancy reversal, decoupling and the transition from stratocumulus-topped to trade cumulus-topped marine boundary layers. Climate Dynamics, pages 1–14, 10.1007/s00382-010-0882-3.

Ma, H.-Y., C. R. Mechoso, Y. Xue, H. Xiao, C.-M. Wu, J.-L. Li, and F. De Sales, 2010: Impact of land surface processes on the South American warm season climate. Climate Dynamics, pages 1–17, 10.1007/s00382- 010-0813-3.

Before 2010

Wu, C.-M., B. Stevens and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 1793-1806.

Wu, C.-M. 2008: A study of the diurnal cycle of moist convection over land using a cloud-system resolving model. Ph. D dissertation, UCLA, Department of Atmospheric and Oceanic sciences.

Wu, C.-M. 2000: The interannual variability of western north Pacific monsoon. Master thesis, National Taiwan University, Department of Atmospheric Sciences.